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Biotin synthase catalyzes the insertion of a sulfur atom
between two carbon atoms of dethiobiotin to form biotin
in the last step of the biotin biosynthesis pathway. In
Escherichia coli, biotin synthase is coded for by bioB
gene. We report here cloning, sequencing, and initial
functional characterization of the yeast gene for biotin
synthase in Saccharomyces cerevisiae. We have named
this gene BIOZ2. It consists of a 355-codon open reading
frame near the ZUO 1 gene. Analysis of the yeast protein
encoded by the BIOZ2 gene reveals that it shares extensive
homology with biotin synthases of E. coli and Bacillus
sphaericus. The yeast and the two bacterial biotin syn-
thase proteins have similar molecular weights, amino
acid compositions, and hydropathies. The plasmid
pUCBIO2 containing the yeast BIO2 gene completely
complements E. coli bioB~ and Abio mutants and enables
these mutants to grow on dethiobiotin. Although BIO2
is physically linked to ZUO 1, which encodes the putative
left-handed Z-DNA binding protein zuotin, it appears to
be regulated independently from it. The yeast BIO2 and
ZUO1 genes reside near ADE3 gene on chromosome VII.
BIO2 is the first eukaryotic gene reported from the biotin
biosynthetic pathway. © 1994 Academic Press, Inc.

The last step of the biotin biosynthetic pathway is cat-
alyzed by biotin synthase (1). Although very little is
known about this enzyme, the transformation involves
the addition of sulfur to dethiobiotin to form biotin as
shown in Scheme I.
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SCHEME 1. The reaction catalyzed by biotin synthase.

This reaction has recently been reported for the first
time in crude extracts (2). From a chemical point of view,
the addition of sulfur to two unactivated carbon atoms
appears to be a very difficult reaction, and the elucidation
of the mechanism of this reaction promises to be a fas-
cinating problem. Some work was done on the mechanism
of this reaction before the availability of a cell-free system.
For example, Parry (3) has shown that all the hydrogen
atoms of dethiobiotin are preserved in the biotin synthase
reaction, except for the two removed to allow the addition
of sulfur; namely the pro-S hydrogen atom on the meth-
ylene carbon attached to the imidazolinone ring, and a
hydrogen atom on the methyl carbon attached to the im-
idazolinone ring. Parry has also shown that the addition
of sulfur to the methylene carbon attached to the imi-
dazolinone ring occurs with retention of configuration.

The immediate sulfur donor for this reaction has not
been identified despite considerable effort, and there is
confusion in the literature on this matter. For example,
in experiments with Saccharomyces cerevisiae, methionine
sulfoxide and methionine appeared to be the most effective
sulfur donors, whereas cysteine was not effective (4, 5).
On the other hand, experiments with Escherichia coli seem
to show that methionine may not be the suifur donor;
rather, it is cysteine or a compound closely related to it
(6, 7). Whether there is a difference in sulfur donors for
this reaction among various organisms is not clear at
present.
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The gene that codes for biotin synthase has been iden-
tified in E. coli and has been given the designation bioB
(1). The E. coli bioB gene has been cloned and sequenced
(8), as has the gene coding for biotin synthase from B.
sphaericus (9). The gene coding for biotin synthase from
R. capsulatus has been cloned, but no sequence has been
reported (10).

Although higher plants (11, 12), S. cerevisiae (13), and
other eukaryotes (14) apparently make biotin by a path-
way similar to that in E. coli, very little work has been
done on biotin biosynthesis in eukaryotes and none of
the genes involved in biotin biosynthesis in eukaryotes
has been identified. S. cerevisiae are unusual in that they
contain only part of the biotin biosynthetic pathway. S.
cerevisiae cannot make biotin de novo; however, if sup-
plemented with 7,8-diaminopelargonic acid, an interme-
diate in the biotin biosynthetic pathway worked out for
E. coli, S. cerevisiae can carry out the last two steps in
that pathway, i.e., the conversion of 7,8-diaminopelargonic
acid to dethiobiotin, and the conversion of dethiobiotin
to biotin (13). This would be possible only if yeast pos-
sesses the genes for the last two enzymes in the biotin
biosynthetic pathway. We report here the cloning and
sequencing of BIO2, the gene for biotin synthase in yeast.
We also show that functional protein from this gene can
be expressed in E. coli and phenotypically complement
E. coli bioB~ and Abio strains.

MATERIALS AND METHODS

Strains and DNA. The yeast EMBL3A DNA library was a gift of
Richard Young of the Whitehead Institute and MIT. The E. coli strains
used in the complementation experiments were E. coli K12-Y10 bioB™105
obtained from Max Eisenberg of Columbia University and KS302 Abio
(biotin operon deletion strain) from Gerald Cohen of Tel Aviv University.
Enzymes and plasmid pUC19 were purchased from New England Bio-
labs; DNA Sequenase Kit was purchased from United States Biochem-
icals; [y-**S]dATP (1000 Ci/mM) was purchased from NEN and Amer-
sham. Oligonucleotides used as sequencing primers were either made
internally or purchased from Oligos, ETC., Inc.

Cloning and sequencing BIO2 gene. Detailed methods used to clone
the yeast ZUOI gene that led to our interest in the ORF* 5' to this gene
have been described (15). Briefly, a S. cerevisize genomic phage
MEMBL3A DNA library was screened using a pool of degenerative oli-
gonucleotides corresponding to the N-terminus of zuotin. Fourteen pos-
itive phage plaques were isolated. Phage DNA from 11 clones was purified
from the confluent plate lysates. DNA was then digested with several
restriction enzymes and a Southern blot was performed as described
(15). A 3.1-kb EcoRl and BamH] fragment was used to sequence the
ZUOI gene. Part of an ORF that turned out to be the BIO2 gene was
found on this fragment 5 to the ZUOI gene. To sequence the complete
ORF 5'to the ZUOI gene, a phage clone containing a yeast 2.4-kb HindIII
fragment was chosen because this fragment contained a longer piece of
DNA in the direction of the ORF 5’ to the ZUOI gene. This fragment
was subcloned into pUC19 and the new plasmid was designated
pUCH2.4. The 2.4-kb HindIII fragment was sequenced on both strands
by the Sanger method (16) using synthetic oligonucleotides primers to
the lacZ region and part of the DNA in the ORF that had already been

4 Abbreviations used: ORF, open reading frame.
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FIG. 1. Diagram of pUCBIO2. This plasmid was used for DNA se-
quencing and for the transformation of E. coli bioB mutants. The 2.4-
kb yeast HindIII fragment was inserted at the HindIII site in pUC19.
The BIO2, N-terminus portion of ZUOI, and Amp are indicated. Yeast
DNA between the BIO2 and the ZUOI genes is shown in double lines.
ORI is the origin of replication. MCS is the multiple cloning site of
pUC19. The BIO2 and ZUO! are in the same orientation as lacZ. After
sequencing the HindIIl fragment, it was calculated that the plasmid
contains 5113 base pairs.

sequenced. The plasmid pUCH2.4 was renamed pUCBIO2 after we be-
came convinced that it contains the entire yeast biotin synthase gene.

Transformation of E. coli biotin auxotrophic mutants. 'The plasmid
pUCBIO2 containing a 2.4-kb HindIII yeast fragment was used to
transform competent E. coli K12-Y10 bioB~105 and KS302 Abio cells
prepared using the CaCl, method (17). The transformed cells were placed
on the M-9 plates with 1% glucose, 10 mM dethiobiotin, and 100 mg/
ml ampicillin. Several colonies grew under these conditions.

Measurement of growth rate of the complemented E. coli cells. Single
colonies of E. coli bioB~ and Abio strains transformed with the pUCBIO2
plasmid were inoculated into flasks containing M-9 with 1% glucose
and 100 mg/ml ampicillin. Biotin or dethiobiotin was added at a con-
centration of 20 mM to the media. The cultures were grown with shaking
at 37°C and the absorbance of the cultures was measured periodically
at 600 nm.

Computer analysis of sequences. The sequence analysis programs used
in comparing the structures were TfastA and Bestfit from the Genetic
Computer Group, Inc. (GCG) (version 6.2) and MacMolly Tetra (version
1.2) (SoftGene, Berlin, Germany).

RESULTS

Cloning and sequencing the ORF adjacent to the ZUO1
gene. While sequencing the ZUO1 gene and the con-
tiguous DNA, it became apparent that a peptide encoded
by a partially sequenced ORF 5 to the ZUOI gene
shared significant homology with the C-terminal region
of the peptide encoded by the bioB gene of E. coli (8).
The possibility that the gene for biotin synthase in yeast
had also been cloned serendipitiously while cloning the
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FIG. 2. Nucleotide and translated peptide sequence of yeast BIO2 gene. BIO2 encodes the gene for yeast biotin synthase. The sequence is shown
for the entire BIO2 gene 5 to the ZUOI gene including 156 base pairs 5 to the coding region of BI02, and an intergenic spacer of 623 base pairs.
The last three nucleotides, ATG, constitute the first Met codon for zuotin. The rest of the zuotin sequence has been published (15). The 5
noncoding regions that are underlined contain (A/T)-rich segments that may serve as transcription start sites for BIO2. The 623-base-pair
intergenic spacer between the 3’ end of the BIO2 and the 5 end of ZUOI also contains several (A/T) and (AT), segments that may involve in

regulation of ZUOI1. Yeast BIO2 has been deposited in EMBL Data Library under Accession No. X72701.

ZUO1 gene became apparent. This led us to complete
the sequence of the ORF to see if the remaining portion
encoded an amino acid sequence that was homologous
to the N-terminal region of the peptide sequence derived
from the bioB gene of E. coli. This was accomplished
by sequencing a 2.4-kb HindlIl fragment shown in
Fig. 1.

By sequencing the HindIII fragment, we found that it
contains the entire ORF 5’ to the ZUOI gene and in ad-

dition 156 base pairs 5' to the coding region of the ORF.
It also contains a 623-base-pair intergenic spacer between
the ORF and the ZUO1 gene and 170 of the N-terminal
codons of ZUQI gene. The sequence of this fragment up
to the start codon for the ZUQOI gene along with the
translated amino acid sequence of the ORF 5' to the ZUO!I
gene is shown in Fig. 2. Since intergenic spacers are only
about 500-600 base pairs in yeast (Bobby Baum, personal
communication), a lesson from our experience is that se-
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FIG. 3. The growth rates of E. coli KS302Abio that has been trans-
formed with pUCBIO02. E. coli cells were grown in M9 plus 1% glucose
with or without biotin or dethiobiotin. Growth rates were measured by
following the absorbance at Aguonm- The absorbance is plotted vs time.
@, Transformed KS302Abio::pUCBIO2 cells with 20 mM biotin added
to media; M, transformed KS302Abio::pUCBIO2 cells with 20 mM de-
thiobiotin added to media; A, nontransformed KS302Abio cells with 20
mM dethiobiotin added to media.

quencing beyond a gene of interest in yeast can lead to
the discovery of other important genes.

pUCBIOZ2 functionally complements E. coli bioB™ and
Abio strains. The pUCBIO2 plasmid was transformed
into two E. coli strains, K12-Y10 bioB 105 and
KS302Abio. Both strains require biotin for growth and
are unable to grow on dethiobiotin. After transforming
these strains with pUCBIO2, they were able to grow on
minimal media when dethiobiotin was present. The rates
of growth of KS302Abio:pUCBIO2 in liquid minimal me-
dia are shown in Fig. 3.

This strain grew in the presence of biotin as expected.
The pUCBIO2 transformants also grew vigorously in the
presence of dethiobiotin; whereas there is no growth of
this strain without pUCBIO2 in the presence of dethio-
biotin as shown in Fig. 3. The growth rate of the pUCBIO2
transformants with dethiobiotin was almost equivalent
to that with biotin. These results strongly suggest that
the mutant cells transformed with pUCBIOZ2 can express
the yeast biotin synthase protein which converts dethio-
biotin to biotin that is absolutely required for cell growth.
Similar results were obtained with the E. coli K12-Y10
bioB~105 pUCBIO2 cells (data not shown).

DISCUSSION

Since E. coli bioB mutants lacking functional biotin
synthase can grow in the presence of dethiobiotin when
transformed with pUCBIO2, the pUCBIO2 plasmid must
contain a gene that encodes biotin synthase. We have
therefore chosen to name the ORF 5 to the ZUOI gene
in yeast the BIO2 gene. The number 2 was chosen rather

than 1 for consistency in nomenclature since all the genes
for biotin synthase in bacteria have so far been given the
designation of the second letter of the alphabet.

The S. cerevisiae BIO2 gene encodes a protein that is
functionally and physically homologous to biotin synthase
from E. coli and Bacillus sphaericus. The molecular masses
of the proteins encoded by the yeast BIO2, E. coli bioB,
and B. sphaericus bioB genes are 40,020, 38,665, and 37,000
Da, respectively. There is 46% identity and 66% similarity
between the proteins encoded by yeast BIO2 and E. coli
bioB. There is 32% identity and 55% similarity between
the proteins encoded by BIOZ2 and B. sphaericus bioB. It
is surprising that there is a greater homology between the
proteins encoded by E. coli bioB and yeast BIO2 than
there is between the proteins encoded by E. coli and B.
sphaericus (34% identity and 59% similarity).

It has been reported that E. coli harboring conjugative
plasmids can mobilize DNA transfer between E. coli and
yeast (18). An intriguing possibility is that the BIO2 gene
in yeast was acquired from E. coli through a conjugation
event during evolution. If the degree of homology between
the yeast and E. coli dethiobiotin synthase is also very
high, it would be consistent with both genes being acquired
by conjugation.

There are approximately equal numbers of hydrophobic
and hydrophilic segments in these three proteins, and the
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FIG. 4. Comparison of hydropathy of biotin synthases of yeast (top)
and E. coli (bottom). The hydropathy of the proteins are remarkably
similar. The profiles are nearly superimposable, implying structural
similarity.
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FIG. 5. The alignment of biotin synthases of B. sphaericus bioB, yeast BIO2, and E. coli bioB. A vertical line indicates the identity, a colon,
indicates conservative amino acid change, and a single dot indicates less conservative changes. Note the conserved cysteines corresponding to
yeast residues 78, 82, 85, 123, 156, and 216 as well as the conserved histidine at 180.

overall hydropathy patterns are remarkably similar. This
is shown in Fig. 4 for yeast BIO2 and E. coli bioB. These
similarities suggest that these proteins fold into similar
structures.

The aligned sequences of the proteins encoded by these
three biotin synthase genes are shown in Fig. 5. There are
many conserved residues. From the nature of the reaction
catalyzed by biotin synthases, it seems likely that enzyme-
bound metal ion(s) may participate in catalysis. In this
regard, the six conserved cysteines and one conserved his-
tidine among these three proteins are of particular interest.
In the protein encoded by yeast BIO2 the conserved cys-
teines occur at residues 78, 82, 85, 123, 156, and 216 and
the conserved histidine occurs at residue 180. The side
chains of these amino acids could be involved in metal
binding. Cysteines 78, 82, and 85 are in a particularly highly

conserved region with the motif Cys-X-X-X-Cys-X-X—
Cys. Although this exact motif is quite rare, two of its
components are found in proteins with Fe-S clusters. The
Cys—X-X-Cys motif is very common in proteins with Fe—
S clusters (19). The Cys—X-X-X-Cys motif occurs, for
example, in 7-Fe ferredoxins, some 2-Fe ferredoxins, suc-
cinate dehydrogenase, and fumarate reductase (19-21).
Among the 7-Fe ferredoxins containing the Cys-X-X-X-
Cys motif, the side chains of each of the Cys are ligands
for a Fe-S cluster, but they are in different clusters. In
addition, in the 7-Fe ferredoxins, Glu is commonly the
amino acid corresponding to the middle X (i.e., Cys-X~
E-X-Cys), and this is also the case in each of the biotin
synthases in Fig. 3. As far as we are aware, there are no
known cases where the side chains of both Cys in a Cys-
X-X-X-Cys motif are ligands to the same cluster (21).
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FIG. 6. Selected features of yeast BIO2 protein. BIO2 has 28.5%
charged residues unevenly distributed in the protein as indicated by the
+ on each amino acid. There are a number of potential phosphorylation
and N-glycosylation sites as marked: ® protein kinase C; Ocasein kinase
I; Y% tyrosine kinase; and * N-glycosylation sites.

A search of the current protein and nucleic acid data
bases reveals that there are only four other proteins that
contain a Cys—X-X-X-Cys-X-X-Cys motif. One is en-
coded by the E. coli lipA gene. This gene encodes a protein
involved in the synthesis of lipoic acid (22, 23). This is
of particular interest since a reaction(s) in the biosyn-
thesis of lipoic acid resembles the reaction of biotin syn-
thase in that sulfur atoms are added to the unactivated
carbon atoms. Three other proteins with such a motif are
found in nifB gene product of K. pneumoniae, B. japoni-
cum, and A. vinlandii (24). The nifB gene product seems
to function in the synthesis of the iron molybdeum co-
factor of nitrogenase.

The one conserved histidine is in the motif, Tyr—Asn—
His—Asn, which is entirely conserved in all three biotin
synthases. This motif occurs at residues 178 to 181 in
yeast BIO2. The lipA protein also contains such a Tyr-
Asn-His—Asn motif. It is perhaps of significance that in
the lipA protein there are 92 amino acids separating the
final cysteine (residue 61) in the Cys-X-X-X-Cys-X-
X-Cys motif and the histidine (residue 153) in the Tyr-
Asn—His—Asn motif (22). Likewise, in the biotin synthases
of E. coli, B. sphaericus, and yeast, there are respectively
92,93, and 95 amino acids separating the corresponding
residues.

BIO2 and ZUOI reside in tandem on yeast chromosome
VII near ADE3 and toward the teleomere (15). The dis-
tance between the 3’ end of the coding region of BIO2 and
5' end of the coding region of ZUOI coding regions is 623
bp. The 5 noncoding A/T rich region for ZUOI gene does
not extend to the BIO2 gene coding region. This suggests
that these two genes are under separate transcriptional
regulation even though they are physically in close con-
tact.

In the case of E. coli, the birA gene product (1) acts as
the transcriptional repressor of the bio operon, (2) cata-

lyzes the activation of biotin to biotin-AMP, and (3) cat-
alyzes the addition of this activated form of biotin to the
proper lysine side chain in biotin-dependent carboxylases
(25). A similar system may exist in yeast. The 5 noncoding
region of the BIO2 gene does not resemble the transcrip-
tional and translational regulatory region of the E. coli
bio operon, so the nature of its regulation in yeast is not
clear at present. Since the yeast BIO2 gene can function-
ally complement E. coli bioB mutants, the yeast BIO2
gene must have been correctly transcribed and translated
in E. coli. It is not clear which part of the 5' noncoding
region of the BIO2 gene functioned as a promoter, in E.
coli, but there are several AT-rich regions in the 5 non-
coding region of BIOZ2 that could act as E. coli promoters.

Additional regulation of biotin biosynthesis in yeast
may take place post-translationally since there are a
number of potential phosphorylation sites in BIOZ2 in-
cluding sites for protein kinase C, casein kinase II, and
tyrosine kinase as well as sites for four potential N-gly-
cosylation (Fig. 6). The involvement of these phosphor-
ylation and N-glycosylation sites as well as regulation of
the BIO2 gene await further investigation.
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